题目内容
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.
(1)证明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PD∶AD的值.
(1)证明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PD∶AD的值.
(1)见解析(2)∶2
(1)证明 因为PD⊥平面ABCD,∴PD⊥AC,又ABCD是菱形,∴BD⊥AC,又BD∩PD=D,故AC⊥平面PBD,又AC?平面EAC.
所以平面EAC⊥平面PBD.
(2)解 连接OE,
因为PD∥平面EAC,所以PD∥OE,所以OE⊥平面ABCD,又O是BD的中点,故此时E为PB的中点,以点O为坐标原点,射线OA,OB,OE所在直线分别为x,y,z轴,建立空间直角坐标系O-xyz.
设OB=m,OE=h,则OA=m,A,B(0,m,0),E(0,0,h),=(-m,m,0),=(0,-m,h),向量n1=(0,1,0)为平面AEC的一个法向量,设平面ABE的一个法向量n2=(x,y,z)
则n2·=0,且n2·=0,
即-mx+my=0且-my+hz=0.
取x=1,则y=,z=,则n2=,
∴cos 45°=|cos〈n1,n2〉|===,解得=,故PD∶AD=2h∶2m=h∶m=∶2.
所以平面EAC⊥平面PBD.
(2)解 连接OE,
因为PD∥平面EAC,所以PD∥OE,所以OE⊥平面ABCD,又O是BD的中点,故此时E为PB的中点,以点O为坐标原点,射线OA,OB,OE所在直线分别为x,y,z轴,建立空间直角坐标系O-xyz.
设OB=m,OE=h,则OA=m,A,B(0,m,0),E(0,0,h),=(-m,m,0),=(0,-m,h),向量n1=(0,1,0)为平面AEC的一个法向量,设平面ABE的一个法向量n2=(x,y,z)
则n2·=0,且n2·=0,
即-mx+my=0且-my+hz=0.
取x=1,则y=,z=,则n2=,
∴cos 45°=|cos〈n1,n2〉|===,解得=,故PD∶AD=2h∶2m=h∶m=∶2.
练习册系列答案
相关题目