题目内容
【题目】1979年,李政道博士给中国科技大学少年班出过一道智趣题:5只猴子分一堆桃子,怎么也不能分成5等份,只好先去睡觉,准备第二天再分,夜里1只猴子偷偷爬起来,先吃掉一个桃子,然后将其分成5等份,藏起自己的一份就去睡觉了;第2只猴子又爬起来,将剩余的桃子吃掉一个后,也将桃子分成5等份;藏起自己的一份睡觉去了;以后的3只猴子都先后照此办理,问:最初至少有多少个桃子?最后至少剩下多少个桃子?
【答案】最初至少有桃子个,从而最后至少剩下
个.
【解析】试题分析:
将原问题转化为数列的递推关系的题目,然后结合递推关系式讨论可得最初至少有桃子个,从而最后至少剩下
个.
试题解析:
假如我们设最初有个桃子,猴子每次分剩下的桃子依次为
,得到一个数列
,依题意,可知数列的递推公式:
,即
,
整理变形,得.
故是以
为公比的等比数列,所以
,
欲使,应有
,
故最初至少有桃子个,从而最后至少剩下
个.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某产品的广告费用x与销售额y的统计数据如表:
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
根据上表可得回归方程 =
x+
中的
为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.67.7万元
C.65.5万元
D.72.0万元