题目内容

【题目】已知点A(0,﹣1)是抛物线C:x2=2py(p>0)准线上的一点,点F是抛物线C的焦点,点P在抛物线C上且满足|PF|=m|PA|,当m取最小值时,点P恰好在以原点为中心,F为焦点的双曲线上,则此双曲线的离心率为(
A.
B.
C. +1
D. +1

【答案】C
【解析】解:点A(0,﹣1)是抛物线C:x2=2py(p>0)准线上的一点,可得p=2, 抛物线的标准方程为x2=4y,
则抛物线的焦点为F(0,1),准线方程为y=﹣1,
过P作准线的垂线,垂足为N,
则由抛物线的定义可得|PN|=|PF|,
∵|PF|=m|PA|,∴|PN|=m|PA|,则 =m,
设PA的倾斜角为α,则sinα=m,
当m取得最小值时,sinα最小,此时直线PA与抛物线相切,
设直线PA的方程为y=kx﹣1,代入x2=4y,
可得x2=4(kx﹣1),
即x2﹣4kx+4=0,
∴△=16k2﹣16=0,∴k=±1,
∴P(2,1),
∴双曲线的实轴长为|PA|﹣|PF|=2( ﹣1),
∴双曲线的离心率为 = +1.
故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网