题目内容
【题目】已知点A(0,﹣1)是抛物线C:x2=2py(p>0)准线上的一点,点F是抛物线C的焦点,点P在抛物线C上且满足|PF|=m|PA|,当m取最小值时,点P恰好在以原点为中心,F为焦点的双曲线上,则此双曲线的离心率为( )
A.
B.
C. +1
D. +1
【答案】C
【解析】解:点A(0,﹣1)是抛物线C:x2=2py(p>0)准线上的一点,可得p=2, 抛物线的标准方程为x2=4y,
则抛物线的焦点为F(0,1),准线方程为y=﹣1,
过P作准线的垂线,垂足为N,
则由抛物线的定义可得|PN|=|PF|,
∵|PF|=m|PA|,∴|PN|=m|PA|,则 =m,
设PA的倾斜角为α,则sinα=m,
当m取得最小值时,sinα最小,此时直线PA与抛物线相切,
设直线PA的方程为y=kx﹣1,代入x2=4y,
可得x2=4(kx﹣1),
即x2﹣4kx+4=0,
∴△=16k2﹣16=0,∴k=±1,
∴P(2,1),
∴双曲线的实轴长为|PA|﹣|PF|=2( ﹣1),
∴双曲线的离心率为 = +1.
故选:C.
练习册系列答案
相关题目
【题目】商丘市大型购物中心——万达广场将于2018年7月6日全面开业,目前正处于试营业阶段,某按摩椅经销商为调查顾客体验按摩椅的时间,随机调查了50名顾客,体验时间(单位:分钟)落在各个小组的频数分布如下表:
体验 时间 | |||||||
频数 |
(1)求这名顾客体验时间的样本平均数,中位数,众数;
(2)已知体验时间为的顾客中有2名男性,体验时间为的顾客中有3名男性,为进一步了解顾客对按摩椅的评价,现随机从体验时间为和的顾客中各抽一人进行采访,求恰抽到一名男性的概率.