题目内容
1.对于每个自然数.抛物线y=(n2+n)x2-(2n+1)x+1与x轴交于An,Bn两点,|AnBn|表示这两点间的距离,那么|A1B1|+|A2B2|+…+|A2008B2008|的值( )A. | $\frac{2007}{2008}$ | B. | $\frac{2008}{2009}$ | C. | $\frac{2007}{2009}$ | D. | $\frac{2008}{2007}$ |
分析 通过整理可知方程y=0的两根分别为:$\frac{1}{n}$、$\frac{1}{n+1}$,进而并项相加即得结论.
解答 解:y=(n2+n)x2-(2n+1)x+1
=n(n+1)x2-[n+(n+1)]x+1
=(nx-1)[(n+1)x-1],
∴方程y=0的两根分别为:$\frac{1}{n}$、$\frac{1}{n+1}$,
∴|AnBn|=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴|A1B1|+|A2B2|+…+|A2008B2008|
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2008}$-$\frac{1}{2009}$
=1-$\frac{1}{2009}$
=$\frac{2008}{2009}$,
故选:B.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
16.在△ABC中,若a=4.b=3,c=2,则△ABC边BC的中线AD长为( )
A. | $\sqrt{10}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\frac{\sqrt{15}}{2}$ | D. | $\frac{5}{2}$ |
13.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:
算得,K2≈7.8.见附表:参照附表,得到的正确结论是( )
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” | |
B. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” | |
C. | 有99%以上的把握认为“爱好该项运动与性别有关” | |
D. | 有99%以上的把握认为“爱好该项运动与性别无关” |
20.将函数y=sin2x的图象先向左平移$\frac{π}{4}$个单位,再向上平移1个单位长度所得图象对应的函数为( )
A. | y=-cos2x+1 | B. | y=cos2x+1 | C. | y=sin(2x+$\frac{π}{4}$)+1 | D. | y=sin(2x-$\frac{π}{4}$)+1 |