题目内容
(本小题满分12分)
如图,四棱锥
中,底面
是边长为2的正方形,
,且
,
为
中点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240040524133581.png)
(1)求证:
平面
;
(2)求二面角
的余弦值.
如图,四棱锥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052272604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052319534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052335684.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052350462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052366318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052381365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240040524133581.png)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052413394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052319534.png)
(2)求二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052444595.png)
(1)推证
平面
,得到
,同理可证
,
平面
.
(2)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052459418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052475441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052475552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052491546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052506394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052319534.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240040525371415.png)
试题分析:(1)证明:∵底面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052319534.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052553543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052569522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052459418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052475441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052475552.png)
同理可证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052491546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052506394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052319534.png)
(2)建立如图的空间直角坐标系,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052678519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240040527093954.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052725545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052740620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052756552.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052771374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052787558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052818499.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052771374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052834448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052771374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052865430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052881687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052881722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052896903.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052912354.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052927485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052771374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052943467.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052959681.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052974481.png)
设二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004052444595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004053005297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240040530211401.png)
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤。本题通过空间直角坐标系,利用向量知识可简化证明过程。把证明问题转化成向量的坐标运算,这种方法带有方向性。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目