题目内容
9.已知函数f(x)=sinx-$\frac{1}{{2{x^2}}}$,若$\frac{π}{3}<a<b<\frac{5π}{6}$,则( )A. | f(a)>f(b) | B. | f(a)<f(b) | C. | f(a)=f(b) | D. | f(a)f(b)>0 |
分析 利用导数求得f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是增函数,再根据f($\frac{π}{3}$)f($\frac{5π}{6}$)>0,$\frac{π}{3}<a<b<\frac{5π}{6}$,可得 f(a)f(b)>0.
解答 解:∵函数f(x)=sinx-$\frac{1}{{2{x^2}}}$,∴f′(x)=cosx+$\frac{1}{{x}^{3}}$,
故当$\frac{π}{3}$<x<$\frac{5π}{6}$时,函数f′(x)为减函数,而f′($\frac{5π}{6}$)=$\frac{1}{2}$-$\frac{18}{25{•π}^{2}}$>0,
故f′(x)>0在($\frac{π}{3}$,$\frac{5π}{6}$)上恒成立,故f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是增函数,
f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$-$\frac{9}{{2π}^{2}}$>0,f($\frac{5π}{6}$)=$\frac{1}{2}$-$\frac{18}{25{•π}^{2}}$>0,
∴f($\frac{π}{3}$)f($\frac{5π}{6}$)>0,
再根据若$\frac{π}{3}<a<b<\frac{5π}{6}$,可得 f(a)f(b)>0,
故选:D.
点评 本题主要考查利用导数研究函数的单调性,函数值的符号,属于基础题.
练习册系列答案
相关题目
18.设x,y满足约束条件$\left\{\begin{array}{l}{x-y-3≤0}\\{x-2y≥0}\\{x+y-3≥0}\end{array}\right.$,则z=2x-y的最小值为( )
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
15.设函数f(x)是定义在(-∞,+∞)上的增函数,实数a使得f(1-ax-x2)<f(2-a)对于任意x∈[0,1]都成立,则实数a的取值范围是( )
A. | (-∞,1) | B. | [-2,0] | C. | (-2-2$\sqrt{2}$,-2+2$\sqrt{2}})$) | D. | [0,1] |
4.下列关于叙述错误的是( )
A. | 在△ABC中,a:b:c=sinA:sinB:sinC | |
B. | 在△ABC中,a=b⇒sin2A=sin2B | |
C. | 在△ABC中,余弦值较小的角所对的边也较小 | |
D. | 在△ABC中,$\frac{a}{sinA}=\frac{a+b-c}{sinB-sinC+sinA}$ |
18.已知正方体的棱长为2$\sqrt{3}$,则外接球的体积为( )
A. | 36π | B. | 288π | C. | 12π | D. | 18π |
19.已知函数f(x)=sinx,f(x)的导数是( )
A. | 偶函数 | B. | 奇函数 | C. | 增函数 | D. | 减函数 |