题目内容
已知函数f(x)=sinx-
cosx+2,记函数f(x)的最小正周期为β,向量
=(2,cosα),
=(1,tan(α+
))(0<α<
),且
•
=
.
(Ⅰ)求f(x)在区间[
,
]上的最值;
(Ⅱ)求
的值.
3 |
a |
b |
β |
2 |
π |
4 |
a |
b |
7 |
3 |
(Ⅰ)求f(x)在区间[
2π |
3 |
4π |
3 |
(Ⅱ)求
2cos2α-sin2(α+β) |
cosα-sinα |
(Ⅰ)根据题意,可得
f(x)=sinx-
cosx+2=2(sinxcos
-cosxsin
)+2=2sin(x-
)+2.
∵x∈[
,
],可得x-
∈[
,π],∴sin(x-
)∈[0,
],
当x=
时,f(x)的最小值是2;当x=
时,f(x)的最大值是4.
(Ⅱ)∵f(x)=2sin(x-
)+2的周期T=2π,∴β=2π,
由此可得
•
=2+cosα•tan(α+
)=2+cosαtan(α+π)=2+sinα=
,解之得sinα=
.
∴
=
=
=
=2cosα,
∵0<α<
,可得cosα=
=
,
∴
=2cosα=
.
f(x)=sinx-
3 |
π |
3 |
π |
3 |
π |
3 |
∵x∈[
2π |
3 |
4π |
3 |
π |
3 |
π |
3 |
π |
3 |
π |
2 |
当x=
4π |
3 |
5π |
6 |
(Ⅱ)∵f(x)=2sin(x-
π |
3 |
由此可得
a |
b |
β |
2 |
7 |
3 |
1 |
3 |
∴
2cos2α-sin2(α+β) |
cosα-sinα |
2cos2α-sin2(α+π) |
cosα-sinα |
2cos2α-sin2α |
cosα-sinα |
2cosα(cosα-sinα) |
cosα-sinα |
∵0<α<
π |
4 |
1-sin2α |
2
| ||
3 |
∴
2cos2α-sin2(α+β) |
cosα-sinα |
4
| ||
3 |
练习册系列答案
相关题目