题目内容

过抛物线x2=4y的焦点F作与y轴垂直的直线与抛物线相交于点P,则抛物线在点P处的切线l的方程为______.
抛物线x2=4y的焦点F(1,0),与y轴垂直的直线为 y=1,故点P的坐标为(-2,1),或(2,1),
当点P的坐标为(-2,1)时,切线的斜率为 f′(-2)=-1,切线方程为 y-1=-1(x+2),即x+y+1=0.
当点P的坐标为(2,1)时,切线的斜率为 f′(2)=1,切线方程为 y-1=1(x-2),即x-y-1=0.
故答案为x-y-1=0或x+y+1=0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网