题目内容
【题目】设函数f(x)=x3+ax2+bx+1的导数满足,,其中常数a,b∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设,求函数g(x)的极值.
【答案】(1)6x+2y-1=0;(2)g(x)在x=0处取得极小值g(0)=-3,在x=3处取得极大值g(3)=15e-3.
【解析】试题分析:(Ⅰ)由已知条件解出a,b,得到函数f(x)的表达式,切线方程的斜率即为该点导数值,由点斜式即可写出切线方程;
(Ⅱ)求g(x)导函数g′(x)=(-3x2+9x)e-x,可得出单调区间,从而得到极值.
试题解析:(1)∵f(x)=x3+ax2+bx+1,∴f′(x)=3x2+2ax+b,
则解得
∴f(x)=x3-x2-3x+1,∴f(1)=-,f′(1)=-3,
∴y=f(x)在(1,f(1))处的切线方程为
y-=-3(x-1),即6x+2y-1=0;
(2)由(1)知g(x)=(3x2-3x-3)e-x,
∴g′(x)=(-3x2+9x)e-x,
令g′(x)=0,即(-3x2+9x)e-x=0,得x=0或x=3,
当x∈(-∞,0)时,g′(x)<0,
故g(x)在(-∞,0)上单调递减.
当x∈(0,3)时,g′(x)>0,故g(x)在(0,3)上单调递增.
当x∈(3,+∞)时,g′(x)<0,
故g(x)在(3,+∞)上单调递减.
从而函数g(x)在x=0处取得极小值g(0)=-3,
在x=3处取得极大值g(3)=15e-3.
练习册系列答案
相关题目