题目内容
【题目】椭圆Γ: =1(a>b>0)的左右焦点分别为F1 , F2 , 焦距为2c,若直线y= 与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1 , 则该椭圆的离心率等于 .
【答案】
【解析】解:如图所示,
由直线 可知倾斜角α与斜率 有关系 =tanα,∴α=60°.
又椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,∴ ,∴ .
设|MF2|=m,|MF1|=n,则 ,解得 .
∴该椭圆的离心率e= .
故答案为 .
由直线 可知斜率为 ,可得直线的倾斜角α=60°.又直线与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,可得 ,进而 .
设|MF2|=m,|MF1|=n,利用勾股定理、椭圆的定义及其边角关系可得 ,解出a,c即可.
练习册系列答案
相关题目
【题目】某地西红柿从月日起开始上市.通过市场调查,得到西红柿种植成本(就是每公斤西红柿的种植成本,单位:元)与上市时间(单位:天)的数据如下表:
上市时间 | 50 | 110 | 250 |
种植成本 | 150 | 108 | 150 |
(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本与上市时间的变化关系:;;;,并求出函数解析式;
(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.