题目内容
【题目】已知椭圆的左右焦点分别为,左顶点为,且,是椭圆上一点.
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,直线别与轴交于点,求证:在轴上存在点,使得无论非零实数怎样变化,以 为直径的圆都必过点,并求出点的坐标.
【答案】(1);(2)证明详见解析,点P坐标为或.
【解析】
(1)依题意得,解出即可;
(2)假设存在这样的点P,设,,,则,
联立直线与椭圆方程求得点,进而求出直线的方程,由此可得,同理可得,由此可得,解出即可得出结论.
(1)解:依题意,解得,
∴椭圆方程为;
(2)证:假设存在这样的点P,设,,,则,
联立,消去,得,
解得,,即,
∵,
∴直线的斜率,
∴直线的方程为,
可得,
同理可得,
∴,,
则,解得或,
∴存在点且坐标为或,使得无论非零实数怎么变化,以为直径的圆都必过点.
【题目】在全面建成小康社会的决胜阶段,让贫困地区同全国人民共同进入全面小康社会是我们党的庄严承诺.在“脱真贫、真脱贫”的过程中,精准扶贫助推社会公平显得尤其重要.若某农村地区有200户贫困户,经过一年扶贫后,对该地区的“精准扶贫”的成效检查验收.从这200户贫困户中随机抽出50户,对各户的人均年收入(单位:千元)进行调查得到如下频数表:
人均年收入 | ||||||
频数 | 2 | 3 | 10 | 20 | 10 | 5 |
若人均年收入在4000元以下的判定为贫困户,人均年收入在4000元~8000元的判定为脱贫户,人均年收入达到8000元的判定为小康户.
(1)用样本估计总体,估计该地区还有多少户没有脱贫;
(2)为了了解未脱贫的原因,从抽取的50户中用分层抽样的方法抽10户进行调研.
①贫困户、脱贫户、小康户分别抽到的人数是多少?
②从被抽到的脱贫户和小康户中各选1人做经验介绍,求小康户中人均年收入最高的一户被选到的概率.
【题目】某市实验中学数学教研组,在高三理科一班进行了一次“采用两种不同方式进行答卷”的考试实验,第一种做卷方式:按从前往后的顺序依次做;第二种做卷方式:先做简单题,再做难题.为了比较这两种做卷方式的效率,选取了名学生,将他们随机分成两组,每组人.第一组学生用第一种方式,第二组学生用第二种方式,根据学生的考试分数(单位:分)绘制了茎叶图如图所示.
若分(含分)以上为优秀,根据茎叶图估计两种做卷方式的优秀率;
设名学生考试分数的中位数为,根据茎叶图填写下面的列联表:
超过中位数的人数 | 不超过中位数的人数 | 合计 | |
第一种做卷方式 | |||
第一种做卷方式 | |||
合计 |
根据列联表,能否有的把握认为两种做卷方式的效率有差异?
附:,.