题目内容
【题目】已知函数,.
(1)判断函数在区间上的零点的个数;
(2)记函数在区间上的两个极值点分别为、,求证:.
【答案】(1);(2)见解析.
【解析】
(1)利用导数分析函数在区间上的单调性与极值,结合零点存在定理可得出结论;
(2)设函数的极大值点和极小值点分别为、,由(1)知,,且满足,,于是得出,由得,利用正切函数的单调性推导出,再利用正弦函数的单调性可得出结论.
(1),,
,当时,,,,则函数在上单调递增;
当时,,,,则函数在上单调递减;
当时,,,,则函数在上单调递增.
,,,,.
所以,函数在与不存在零点,在区间和上各存在一个零点.
综上所述,函数在区间上的零点的个数为;
(2),.
由(1)得,在区间与上存在零点,
所以,函数在区间与上各存在一个极值点、,且,,
且满足即,,
,
又,即,,
,,,
由在上单调递增,得,
再由在上单调递减,得
,即.
练习册系列答案
相关题目