题目内容
已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.
(1)求数列{an}与{bn}的通项公式;
(2)求数列的前n项和
(3)设数列{cn}对任意自然数n,均有,求c1+c2+c3+……+c2006值.
(1)求数列{an}与{bn}的通项公式;
(2)求数列的前n项和
(3)设数列{cn}对任意自然数n,均有,求c1+c2+c3+……+c2006值.
(1)an=2n-1,bn=3n-1.(2)见解析
(3)当n=1时,c1="3" 当n≥2时, ,
(3)当n=1时,c1="3" 当n≥2时, ,
试题分析:(1)利用等差数列的通项公式将第二项,第五项,第十四项用{an}的首项与公差表示,再据此三项成等比数列,列出方程,求出公差,利用等差数列及等比数列的通项公式求出数列{an}与{bn}的通项公式.
(2)根据数列的通项公式通过裂项求解数列的和
(3)当n≥2时,根据an+1-an,求出数列{cn}通项公式,但当n=1时,不符合上式,因此数列{cn}是分段数列;然后根据通项公式即可求出结果
解:(1)由题意得(a1+d)(a1+13d)=(a1+4d)2(d>0) 解得d=2,∴an=2n-1,bn=3n-1.
(3)当n=1时,c1="3" 当n≥2时, ,
点评:解决该试题的关键是对于等差数列,等比数列基本关系式的求解和运用。
练习册系列答案
相关题目