ÌâÄ¿ÄÚÈÝ
12£®Èçͼ£¬ÒÑÖªÍÖÔ²CµÄÖÐÐÄΪԵãO£¬F£¨-2$\sqrt{5}$£¬0£©ÎªCµÄ×󽹵㣬PΪCÉÏÒ»µã£¬Âú×ã|OP|=|OF|ÇÒ|PF|=4£¬ÔòÍÖÔ²CµÄ·½³ÌΪ£¨¡¡¡¡£©A£® | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{5}$=1 | B£® | $\frac{{x}^{2}}{30}$+$\frac{{y}^{2}}{10}$=1 | C£® | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1 | D£® | $\frac{{x}^{2}}{45}$+$\frac{{y}^{2}}{25}$=1 |
·ÖÎö ÉèÍÖÔ²µÄÓÒ½¹µãΪF¡ä£¬ÓÉ|OP|=|OF|¼°ÍÖÔ²µÄ¶Ô³ÆÐÔÖª£¬¡÷PFF¡äΪֱ½ÇÈý½ÇÐΣ»Óɹ´¹É¶¨Àí£¬µÃ|PF¡ä|£»ÓÉÍÖÔ²µÄ¶¨Ò壬µÃa2£»ÓÉb2=a2-c2£¬µÃb2£»È»ºó¸ù¾ÝÍÖÔ²±ê×¼·½³ÌµÄÐÎʽ£¬Ö±½Óд³öÍÖÔ²µÄ·½³Ì£®
½â´ð ½â£ºÓÉÌâÒâ¿ÉµÃc=2$\sqrt{5}$£¬ÉèÓÒ½¹µãΪF¡ä£¬ÓÉ|OP|=|OF|=|OF¡ä|Öª£¬¡ÏPFF¡ä=¡ÏFPO£¬¡ÏOF¡äP=¡ÏOPF¡ä£¬
ËùÒÔ¡ÏPFF¡ä+¡ÏOF¡äP=¡ÏFPO+¡ÏOPF¡ä£¬
ÓÉ¡ÏPFF¡ä+¡ÏOF¡äP+¡ÏFPO+¡ÏOPF¡ä=180¡ãÖª£¬¡ÏFPO+¡ÏOPF¡ä=90¡ã£¬¼´PF¡ÍPF¡ä£®
ÔÚRt¡÷PFF¡äÖУ¬Óɹ´¹É¶¨Àí£¬µÃ|PF¡ä|=$\sqrt{{FF¡ä}^{2}{-PF}^{2}}$=$\sqrt{{£¨4\sqrt{5}£©}^{2}{-4}^{2}}$=8£¬
ÓÉÍÖÔ²¶¨Ò壬µÃ|PF|+|PF¡ä|=2a=4+8=12£¬´Ó¶øa=6£¬µÃa2=36£¬
ÓÚÊÇ b2=a2-c2=36-${£¨2\sqrt{5}£©}^{2}$=16£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾ÌâÊôÈÝÒ×Ì⣬Ö÷Òª¿¼²éÁËÍÖÔ²µÄ¶¨Òå¼°Æ伸ºÎÌØÕ÷£®¶ÔÓÚÍÖÔ²±ê×¼·½³ÌµÄÇó½â£¬¹Ø¼üÊǸù¾ÝÌâÉè»òͼÐεļ¸ºÎÌØÕ÷£¬Áгö¹ØÓÚa£¬b£¬cµÄÈý¸ö·½³Ì£¬ÕâÑù²ÅÄÜÈ·¶¨a2£¬b2£¬ÊôÓÚÖеµÌ⣮