题目内容

如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计, 可以使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).

参考解析

解析试题分析:假设角AMN的值为θ,由三角形AMN中角NAM为.由正弦定理可得到AM的表达式,在三角形AMP中利用余弦定理表示出AP的值,由角θ的取值范围,再根据三角函数的单调性知识即可得到结论.本小题用了五种解法分别从三角,坐标系,圆等方面入手.
解法一:设∠AMN=θ,在△AMN中,
因为MN=2,所以AM=sin(120°-θ).       2分
在△APM中,cos∠AMP=cos(60°+θ).       4分
AP2=AM2+MP2-2 AM·MP·cos∠AMP=sin2(120°-θ)+4-2×2×sin(120°θ)cos(60°+θ)                   6分
sin2(θ+60°)-sin(θ+60°)cos(θ+60°)+4
[1-cos (2θ+120°)]-sin(2θ+120°)+4
=-[sin(2θ+120°)+cos (2θ+120°)]+
sin(2θ+150°),θ∈(0,120°).              10分
当且仅当2θ+150°=270°,即θ=60°时,AP2取得最大值12,即AP取得最大值2.
答:设计∠AMN为60°时,工厂产生的噪声对居民的影响最小.       12分

解法二(构造直角三角形):
设∠PMD=θ,在△PMD中,
∵PM=2,∴PD=2sinθ,MD=2cosθ.     2分
在△AMN中,∠ANM=∠PMD=θ,∴,
AM=sinθ,∴AD=sinθ+2cosθ,(θ≥时,结论也正确).     4分
AP2=AD2+PD2=(sinθ+2cosθ)2+(2sinθ)2
sin2θ+sinθcosθ+4cos2θ+4sin2θ             6分
·sin2θ+4=sin2θ-cos2θ+
sin(2θ-),θ∈(0,).          10分
当且仅当2θ-,即θ=时,AP2取得最大值12,即AP取得最大值2
此时AM=AN=2,∠PAB=30°            12分
解法三:设AM=x,AN=y,∠AMN=α.
在△AMN中,因为MN=2,∠MAN=60°,
所以MN2=AM2+AN2-2 AM·AN·cos∠MAN,
即x2+y2-2xycos60°=x2+y2-xy=4.          2分
因为,即,
所以sinα=y,cosα=.         4分
cos∠AMP=cos(α+60°)=cosα-sinα=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网