题目内容
3.已知数列{an}的前n项和为Sn,a1=1212,4Sn-12+an(4Sn-1+1)=0(n≥2)分析 (1)利用an=Sn-Sn-1化简可知4SnSn-1=Sn-1-Sn,进而可知数列{1Sn}是以2为首项、4为公差的等差数列,计算即得结论;
(2)通过(1)可知Sn=12•12n−1,通过Sn=(4n+2)bn、裂项可知bn=18•(12n−1-12n+1),并项相加得Tn=14•n2n+1,从而cn=14•n2n,利用错位相减法计算即得结论.
解答 解:(1)依题意,4Sn-12+an(4Sn-1+1)=4Sn-12+(Sn-Sn-1)(4Sn-1+1)
=4Sn-12+Sn(4Sn-1+1)-Sn-1(4Sn-1+1)
=Sn(4Sn-1+1)-Sn-1
=0,
∴4SnSn-1=Sn-1-Sn,
∴4=1Sn-1Sn−1,
又∵1S1=1a1=112=2,
∴数列{1Sn}是以2为首项、4为公差的等差数列,
∴1Sn=2+4(n-1)=4n-2,
∴Sn=14n−2=12•12n−1,
∴an=Sn-Sn-1=12•12n−1-12•12n−3=-1(2n−1)(2n−3),
又∵a1=12不满足上式,
∴数列{an}的通项公式an={12,n=1−1(2n−1)(2n−3),n≥2;
(2)由(1)可知,Sn=12•12n−1,
∵Sn=(4n+2)bn,
∴bn=Sn2(2n+1)=14•1(2n−1)(2n+1)=18•(12n−1-12n+1),
∴Tn=b1+b2+…+bn
=18•(1-13+13-15+…+12n−1-12n+1)
=18•(1-12n+1)
=14•n2n+1,
∴cn=(2n+1)2nTn
=(2n+1)2n•14•n2n+1
=14•n2n,
∴Mn=14(1•12+2•122+3•123+…+n•12n),
∴12•Mn=14[1•122+2•123+…+(n-1)•12n+n•12n+1],
两式相减得:12•Mn=14[12+122+123+…+12n-n•12n+1]
=14•[12(1−12n)1−12-n•12n+1]
=14(1-12n-n•12n+1),
∴Mn=12(1-12n-n•12n+1)
=12-12n+1-n•12n+2.
点评 本题考查数列的通项,注意解题方法的积累,属于中档题.