题目内容
【题目】五位同学各自制作了一张贺卡,分别装入5个空白信封内,这五位同学每人随机地抽取一封,则恰好有两人抽取到的贺卡是其本人制作的概率是______________.
【答案】
【解析】
试题根据题意,首先由排列数公式分析可得5位同学每人随机地抽取1张卡片的情况;进而分两步分析5人中恰好有2人抽取到的贺卡是其本人制作的情况数目,①先在5人中抽出2人,使其抽取到的贺卡是其本人制作的,②分析抽到的都不是其本人制作的3人,由分步计数原理可得其情况数目,由等可能事件的概率公式,计算可得答案.
根据题意,共5张贺卡,5位同学每人随机地抽取1张,有A55=120种情况,要满足5人中恰好有2人抽取到的贺卡是其本人制作,可以先在5人中抽出2人,使其抽取到的贺卡是其本人制作的,有C52=10种情况,则剩余的3人,抽到的都不是其本人制作的,有2种情况,则5人中恰好有2人抽取到的贺卡是其本人制作的情况有10×2=20种,
其概率
练习册系列答案
相关题目
【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量(单位:万元)和收益(单位:万元)的数据如下表:
月份 | ||||||
广告投入量 | ||||||
收益 |
他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程
(ⅱ)若广告投入量时,该模型收益的预报值是多少?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:
,.