题目内容

10.若函数f(x)对任意的实数x,均有f(x-1)+f(x+1)>2f(x),则称函数f(x)具有性质P.
(1)判断函数y=x3是否具有性质P,并说明理由;
(2)求证:函数y=ax(a>0且a≠1)具有性质P;
(3)若函数f(x)具有性质P,且f(0)=f(n)=0(n>2,n∈N*).
求证:对任意i∈{1,2,3,…,n-1}都有f(i)≤0.

分析 (1)由y=x3,举出当x=-1时,不满足f(x-1)+f(x+1)≥2f(x),即可得到结论;
(2)运用指数函数的值域和基本不等式即可得证;
(3)由于本题是任意性的证明,从正面证明比较困难,故可以采用反证法进行证明,即假设f(i)为f(1),f(2),…,f(n-1)中第一个大于0的值,由此推理得到矛盾,进而假设不成立,原命题为真.

解答 (1)解:函数f(x)=x3不具有性质P.
例如,当x=-1时,f(x-1)+f(x+1)=f(-2)+f(0)=-8,2f(x)=-2,
所以,f(-2)+f(0)<2f(-1),
此函数不具有性质P;
(2)证明:由函数y=ax(a>0且a≠1),可得f(x-1)+f(x+1)=ax-1+ax+1
=ax(a+a-1)>2ax•$\sqrt{a•{a}^{-1}}$=2ax=2f(x),
故函数y=ax(a>0且a≠1)具有性质P;
(3)证明:假设f(i)为f(1),f(2),…,f(n-1)中第一个大于0的值,
则f(i)-f(i-1)>0,
因为函数f(x)具有性质P,
所以,对于任意n∈N*,均有f(n+1)-f(n)≥f(n)-f(n-1),
所以f(n)-f(n-1)≥f(n-1)-f(n-2)≥…≥f(i)-f(i-1)>0,
所以f(n)=[f(n)-f(n-1)]+…+[f(i+1)-f(i)]+f(i)>0,与f(n)=0矛盾,
所以,对任意的i∈{1,2,3,…,n-1}有f(i)≤0.

点评 本题考查的知识点是抽象函数及其应用,指数函数和幂函数的性质,反证法,其中在证明全称命题为假命题时,举出反例是最有效,快捷,准确的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网