题目内容

【题目】公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率,他从单位圆内接正六边形算起,令边数一倍一倍地增加,即122448192,逐个算出正六边形,正十二边形,正二十四边形,,正一百九十二边形,的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想极其重要,对后世产生了巨大影响.按照上面“割圆术”,用正二十四边形来估算圆周率,则的近似值是( )(精确到.(参考数据

A.3.14B.3.11C.3.10D.3.05

【答案】B

【解析】

圆内接正二十四边形的中心即为圆心,连接圆心与正二十四边形的各个顶点,构成24个全等的等腰三角形,并且等腰三角形的腰长为单位圆的半径,顶角为,根据圆面积,利用三角形面积公式,计算正二十四边形的面积,求解即可.

由题意可知,单位圆面积,正二十四边形的面积.

.

.

故选:B

练习册系列答案
相关题目

【题目】东莞的轻轨给市民出行带来了很大的方便,越来越多的市民选择乘坐轻轨出行,很多市民都会开汽车到离家最近的轻轨站,将车停放在轻轨站停车场,然后进站乘轻轨出行,这给轻轨站停车场带来很大的压力.某轻轨站停车场为了解决这个问题,决定对机动车停车施行收费制度,收费标准如下:4小时内(含4小时)每辆每次收费5元;超过4小时不超过6小时,每增加一小时收费增加3元;超过6小时不超过8小时,每增加一小时收费增加4元,超过8小时至24小时内(含24小时)收费30元;超过24小时,按前述标准重新计费.上述标准不足一小时的按一小时计费.为了调查该停车场一天的收费情况,现统计1000辆车的停留时间(假设每辆车一天内在该停车场仅停车一次),得到下面的频数分布表:

(小时)

频数(车次)

100

100

200

200

350

50

以车辆在停车场停留时间位于各区间的频率代替车辆在停车场停留时间位于各区间的概率.

1)现在用分层抽样的方法从上面1000辆车中抽取了100辆车进行进一步深入调研,记录并统计了停车时长与司机性别的列联表:

合计

不超过6小时

30

6小时以上

20

合计

100

完成上述列联表,并判断能否有90%的把握认为“停车是否超过6小时”与性别有关?

2)(i表示某辆车一天之内(含一天)在该停车场停车一次所交费用,求的概率分布列及期望

ii)现随机抽取该停车场内停放的3辆车,表示3辆车中停车费用大于的车辆数,求的概率.

参考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网