题目内容
【题目】在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=
(1)求边c的长;
(2)求角B的大小.
【答案】
(1)解:∵acosB=3,bcosA=l,∴a× =3,b× =1,
化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.
相加可得:2c2=8c,解得c=4
(2)解:由(1)可得:a2﹣b2=8.
由正弦定理可得: = = ,
又A﹣B= ,∴A=B+ ,C=π﹣(A+B)= ,可得sinC=sin .
∴a= ,b= .
∴ ﹣16sin2B= ,
∴1﹣ ﹣(1﹣cos2B)= ,即cos2B﹣ = ,
∴﹣2 ═ ,
∴ =0或 =1,B∈ .
解得:B=
【解析】(1)由acosB=3,bcosA=l,利用余弦定理化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加即可得出c.(2)由(1)可得:a2﹣b2=8.由正弦定理可得: = = ,又A﹣B= ,可得A=B+ ,C= ,可得sinC=sin .代入可得 ﹣16sin2B= ,化简即可得出.
练习册系列答案
相关题目