题目内容

【题目】已知数列的前项和为,且 ,则数列中的为(

A. B. C. D.

【答案】B

【解析】解得于是因此数列是以为首项,公比为的等比数列,得,于是,因此数列是以为首项, 为公差的等差数列解得 故选B.

【方法点晴】本题主要考查等差数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法, 已知数列前项和与第项关系,求数列通项公式,常用公式将所给条件化为关于前项和的递推关系或是关于第项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式. 在利用与通项的关系求的过程中,一定要注意 的情况.,进而得出的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网