题目内容
11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,且a+b=$\sqrt{2}+1$.(1)求椭圆C的方程;
(2)过原点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值.
分析 (1)易知c=1;从而可求得a=$\sqrt{2}$,b=1;从而写出椭圆C的方程.
(2)不妨设A(x1,y1),B(x2,y2),从而由题意可得$\left\{\begin{array}{l}{{x}_{1}{x}_{2}+{y}_{1}{y}_{2}=0}\\{\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}=1}\\{\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}=1}\end{array}\right.$,从而化简可得2(${{x}_{1}}^{2}$+${{x}_{2}}^{2}$)=4-3${{x}_{1}}^{2}{{x}_{2}}^{2}$;再设点O到直线AB的距离为d,从而化简d=$\frac{OA•OB}{AB}$=$\frac{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}}{\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}}$=$\frac{\sqrt{6}}{3}$.从而证明.
解答 解:(1)由题意知,2c=2,
故c=1;
又∵a2-b2=c2=1;
∴a-b=$\frac{1}{a+b}$=$\sqrt{2}$-1;
∴a=$\sqrt{2}$,b=1;
∴椭圆C的方程为:$\frac{{x}^{2}}{2}$+y2=1.
(2)证明:不妨设A(x1,y1),B(x2,y2),
由题意可得,
$\left\{\begin{array}{l}{{x}_{1}{x}_{2}+{y}_{1}{y}_{2}=0}\\{\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}=1}\\{\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}=1}\end{array}\right.$,
则${{x}_{1}}^{2}{{x}_{2}}^{2}$=${{y}_{1}}^{2}$${{y}_{2}}^{2}$=(1-$\frac{{{x}_{1}}^{2}}{2}$)(1-$\frac{{{x}_{2}}^{2}}{2}$);
即2(${{x}_{1}}^{2}$+${{x}_{2}}^{2}$)=4-3${{x}_{1}}^{2}{{x}_{2}}^{2}$;
设点O到直线AB的距离为d,
d=$\frac{OA•OB}{AB}$=$\frac{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}}{\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}}$
=$\sqrt{\frac{(1+\frac{{{x}_{1}}^{2}}{2})(1+\frac{{{x}_{2}}^{2}}{2})}{{{x}_{1}}^{2}+{{x}_{2}}^{2}-2{x}_{1}{x}_{2}+{{y}_{1}}^{2}+{{y}_{2}}^{2}-2{y}_{1}{y}_{2}}}$
=$\sqrt{\frac{1+\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{2}+\frac{{{x}_{1}}^{2}{{x}_{2}}^{2}}{4}}{1+\frac{{{x}_{1}}^{2}}{2}+1+\frac{{{x}_{2}}^{2}}{2}}}$
=$\sqrt{\frac{1+(1-\frac{3}{4}{{x}_{1}}^{2}{{x}_{2}}^{2})+\frac{{{x}_{1}}^{2}{{x}_{2}}^{2}}{4}}{2+(1-\frac{3}{4}{{x}_{1}}^{2}{{x}_{2}}^{2})}}$
=$\sqrt{\frac{2}{3}}$=$\frac{\sqrt{6}}{3}$.
故点O到直线AB的距离为定值.
点评 本题考查了椭圆的方程的求法及椭圆与直线的位置关系的判断,属于难题.