题目内容

14.数列{an}中,a1=1,an+an+1=($\frac{1}{4}$)n,Sn=a1+4a2+42a3+…+4n-1an,类比课本中推导等比数列前项和公式的方法,可求得5Sn-4nan=n.

分析 先对Sn=a1+a2•4+a3•42+…+an•4n-1 两边同乘以4,再相加,求出其和的表达式,整理即可求出5Sn-4nan的表达式.

解答 解:由Sn=a1+a2•4+a3•42+…+an•4n-1 ①
得4•sn=4•a1+a2•42+a3•43+…+an-1•4n-1+an•4n ②
①+②得:5sn=a1+4(a1+a2)+42•(a2+a3)+…+4n-1•(an-1+an)+an•4n
=a1+4×$\frac{1}{4}$+42•($\frac{1}{4}$)2+…+4 n-1•($\frac{1}{4}$)n-1+4n•an
=1+1+1+…+1+4n•an
=n+4n•an
所以5sn-4n•an=n,
故答案为:n.

点评 本题主要考查数列的求和,用到了类比法,关键点在于对课本中推导等比数列前n项和公式的方法的理解和掌握.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网