题目内容

【题目】对于数列A:a1 , a2 , …,an , 若满足ai∈{0,1}(i=1,2,3,…,n),则称数列A为“0﹣1数列”.若存在一个正整数k(2≤k≤n﹣1),若数列{an}中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”,例如数列A:0,1,1,0,1,1,0.因为a1 , a2 , a3 , a4与a4 , a5 , a6 , a7按次序对应相等,所以数列{an}是“4阶可重复数列”.
(Ⅰ)分别判断下列数列A:1,1,0,1,0,1,0,1,1,1.是否是“5阶可重复数列”?如果是,请写出重复的这5项;
(Ⅱ)若项数为m的数列A一定是“3阶可重复数列”,则m的最小值是多少?说明理由;
(III)假设数列A不是“5阶可重复数列”,若在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,且a4=1,求数列{an}的最后一项am的值.

【答案】解:(Ⅰ)是“5阶可重复数列”,10101.
(Ⅱ)因为数列{an}的每一项只可以是0或1,所以连续3项共有23=8种不同的情形.
若m=11,则数列{an}中有9组连续3项,则这其中至少有两组按次序对应相等,即项数为11的数列{an}一定是“3阶可重复数列”;若m=10,数列0,0,1,0,1,1,1,0,0,0不是“3阶可重复数列”;则3≤m<10时,均存在不是“3阶可重复数列”的数列{an}.所以,要使数列{an}一定是“3阶可重复数列”,则m的最小值是11.
(III)由于数列{an}在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,即在数列{an}的末项am后再添加一项0或1,则存在i≠j,
使得ai , ai+1 , ai+2 , ai+3 , ai+4与am3 , am2 , am1 , am , 0按次序对应相等,或aj , aj+1 , aj+2 , aj+3 , aj+4与am3 , am2 , am1 , am , 1按次序对应相等,
如果a1 , a2 , a3 , a4与am3 , am2 , am1 , am不能按次序对应相等,那么必有2≤i,j≤m﹣4,i≠j,使得ai , ai+1 , ai+2 , ai+3、aj , aj+1 , aj+2 , aj+3与am3 , am2 , am1 , am按次序对应相等.
此时考虑ai1 , aj1和am4 , 其中必有两个相同,这就导致数列{an}中有两个连续的五项恰按次序对应相等,从而数列{an}是“5阶可重复数列”,这和题设中数列{an}不是“5阶可重复数列”矛盾!所以a1 , a2 , a3 , a4与am3 , am2 , am1 , am按次序对应相等,从而am=a4=1.
【解析】(Ⅰ)是“5阶可重复数列”.(Ⅱ)因为数列{an}的每一项只可以是0或1,所以连续3项共有23=8种不同的情形.分类讨论:若m=11,则数列{an}中有9组连续3项,则这其中至少有两组按次序对应相等,即项数为11的数列{an}一定是“3阶可重复数列”;则3≤m<10时,均存在不是“3阶可重复数列”的数列{an}.(III)由于数列{an}在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,即在数列{an}的末项am后再添加一项0或1,则存在i≠j,使得ai , ai+1 , ai+2 , ai+3 , ai+4与am3 , am2 , am1 , am , 0按次序对应相等,或aj , aj+1 , aj+2 , aj+3 , aj+4与am3 , am2 , am1 , am , 1按次序对应相等,经过分析可得:am=a4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网