题目内容
【题目】已知函数
(1)若函数在处取得极值1,证明:
(2)若恒成立,求实数的取值范围.
【答案】(1)证明见详解;(2)
【解析】
(1)求出函数的导函数,由在处取得极值1,可得且.解出,构造函数,分析其单调性,结合,即可得到的范围,命题得证;
(2)由分离参数,得到恒成立,构造函数,求导函数,再构造函数,进行二次求导.由知,则在上单调递增.根据零点存在定理可知有唯一零点,且.由此判断出时,单调递减,时,单调递增,则,即.由得,再次构造函数,求导分析单调性,从而得,即,最终求得,则.
解:(1)由题知,
∵函数在,处取得极值1,
,且,
,
,
令,则
为增函数,
,即成立.
(2)不等式恒成立,
即不等式恒成立,即恒成立,
令,则
令,则,
,,
在上单调递增,且,
有唯一零点,且,
当时,,,单调递减;
当时,,,单调递增.
,
由整理得
,
令,则方程等价于
而在上恒大于零,
在上单调递增,
.
,
∴实数的取值范围为.
练习册系列答案
相关题目