题目内容
16.设x>0,y>0,$\frac{1}{x}+\frac{1}{y}≥\frac{m}{x+y}$恒成立,则m的范围是m≤4.分析 利用基本不等式,可得($\frac{1}{x}+\frac{1}{y}$)(x+y)=2+$\frac{x}{y}$+$\frac{y}{x}$≥4,即可求出m的范围.
解答 解:∵($\frac{1}{x}+\frac{1}{y}$)(x+y)=2+$\frac{x}{y}$+$\frac{y}{x}$≥2+2$\sqrt{\frac{x}{y}•\frac{y}{x}}$=4(x=y时,等号成立),
∴m≤4.
故答案为:m≤4.
点评 本题考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.
练习册系列答案
相关题目
4.已知x,y满足$\left\{\begin{array}{l}{0≤x≤3}\\{0≤y≤4}\\{x-y≤0}\end{array}\right.$,在(x-2)2+(y+1)2的最小值为( )
A. | 5 | B. | $\frac{9}{2}$ | C. | $\frac{1}{12}$ | D. | 17 |
8.已知△ABC中,∠C=$\frac{π}{2}$,∠A、∠B、∠C对应的边分别为a、b、c,则直线ax+by+c=0被圆x2+y2=4所截得的弦长为( )
A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
5.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,$\overrightarrow{OA}$•$\overrightarrow{OB}$=6(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )
A. | $\frac{{17\sqrt{2}}}{8}$ | B. | 3 | C. | $\frac{{3\sqrt{3}}}{8}$ | D. | $\frac{{3\sqrt{13}}}{2}$ |
6.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1,F2,线段F1F2被抛物线y2=4bx的焦点分成5:3两段,则此双曲线的渐近线为( )
A. | 3x±5y=0 | B. | 5x±3y=0 | C. | $x±\sqrt{15}y=0$ | D. | $\sqrt{15}x±y=0$ |