题目内容
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为 ,若直线l过点P,且倾斜角为 ,圆C以M为圆心,3为半径.
(1)求直线l的参数方程和圆C的极坐标方程;
(2)设直线l与圆C相交于A,B两点,求|PA||PB|.
【答案】
(1)解:直线l的参数方程为 (t为参数),(答案不唯一,可酌情给分)
圆的极坐标方程为ρ=6sinθ.
(2)解:把 代入x2+(y﹣3)2=9,得 ,
设点A,B对应的参数分别为t1,t2,
∴t1t2=﹣7,则|PA|=|t1|,|PB|=|t2|,∴|PA||PB|=7.
【解析】(1)根据题意直接求直线l的参数方程和圆C的极坐标方程.(2)把 代入x2+(y﹣3)2=9,利用参数的几何意义,即可得出结论.
练习册系列答案
相关题目
【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.
(个) | 2 | 3 | 4 | 5 | 6 |
(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分时,才能使区平均每个分店的年利润最大?
(参考公式: ,其中)