题目内容

【题目】已知f(x)是定义在R上的且以2为周期的偶函数,当0≤x≤1时,f(x)=x2 , 如果直线y=x+a与曲线y=f(x)恰有两个不同的交点,则实数a的值为(
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)

【答案】D
【解析】解:设﹣1≤x≤0,则 0≤﹣x≤1,f(﹣x)=(﹣x)2=x2=f(x),
综上,f(x)=x2 , x∈[﹣1,1],f(x)=(x﹣2k)2 , x∈[2k﹣1,2k+1],
由于直线y=x+a的斜率为1,在y轴上的截距等于a,在一个周期[﹣1,1]上,
a=0时 满足条件,a=﹣ 时,在此周期上直线和曲线相切,
并和曲线在下一个区间上图象
有一个交点,也满足条件. 由于f(x)的周期为2,
故在定义域内,满足条件的a 应是 2k+0 或 2k﹣ ,k∈Z.
故选 D.

【考点精析】关于本题考查的函数奇偶性的性质,需要了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网