题目内容

设f(x)在x0处可导,
lim
△x→0
f(x0-2△x)-f(x0)
△x
的值是(  )
A、2f′(x0
B、-f′(x0
C、-2f′(x0
D、不一定存在
考点:极限及其运算
专题:导数的概念及应用
分析:把要求极限的代数式变形,然后利用导数的概念得答案.
解答: 解:
lim
△x→0
f(x0-2△x)-f(x0)
△x

=
lim
△x→0
-2•
f(x0-2△x)-f(x0)
-2△x

=-2
lim
△x→0
f(x0-2△x)-f(x0)
-2△x

=-2f′(x0).
故选:C.
点评:本题考查了极限的求法,考查了导数的概念,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网