题目内容
【题目】某商场举行购物抽奖促销活动,规定每位顾客从装有0、1、2、3的四个相同小球的抽奖箱中,每次取出一球记下编号后放回(连续取两次),若取出的两个小球的编号相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖,则顾客抽奖中三等奖的概率为____________.
【答案】
【解析】
基本事件总数n=4×4=16,利用列举法求出顾客抽奖中三等奖包含的基本事件有7种,由此能求出顾客抽奖中三等奖的概率.
解:规定每位顾客从装有0、1、2、3的四个相同小球的抽奖箱中,
每次取出一球记下编号后放回(连续取两次),
若取出的两个小球的编号相加之和等于6,则中一等奖,
等于5中二等奖,等于4或3中三等奖,
基本事件总数n=4×4=16,
顾客抽奖中三等奖包含的基本事件有:
(0,3),(3,0),(1,2),(2,1),(1,3),(3,1),(2,2),共7种,
∴顾客抽奖中三等奖的概率为p.
故答案为.
【题目】由中央电视台综合频道和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课.每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了、两个地区的100名观众,得到如下的列联表,已知在被调查的100名观众中随机抽取1名,该观众是地区当中“非常满意”的观众的概率为0.4.
非常满意 | 满意 | 合计 | |
35 | 10 |
| |
| |||
合计 |
|
|
|
(1)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取“非常满意”的、地区的人数各是多少.
(2)完成上述表格,并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
附:参考公式:.
(3)若以抽样调查的频率为概率,从、两个地区随机抽取2人,设抽到的观众“非常满意”的人数为,求的分布列和期望.