题目内容

【题目】已知锐角三角形的两个内角A,B满足 ,则有(
A.sin2A﹣cosB=0
B.sin2A+cosB=0
C.sin2A+sinB=0
D.sin2A﹣sinB=0

【答案】A
【解析】解:锐角三角形的两个内角A,B满足

可得 =

即为 =

即有 =

即有cos2AcosB+sin2AsinB=0,

即cos(2A﹣B)=0,

即有2A﹣B=kπ+ ,k∈Z,

由0<A< ,0<B<

可得﹣ <2A﹣B<π,

则k=0,可得2A=B+

sin2A=sin(B+ )=cosB,

即sin2A﹣cosB=0.

故选:A.

【考点精析】根据题目的已知条件,利用同角三角函数基本关系的运用的相关知识可以得到问题的答案,需要掌握同角三角函数的基本关系:;(3) 倒数关系:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网