题目内容
【题目】在正三棱锥中,是的中点,且,底面边长,则正三棱锥的外接球的表面积为( )
A.B.C.D.
【答案】B
【解析】
试题根据三棱锥为正三棱锥,可证明出AC⊥SB,结合SB⊥AM,得到SB⊥平面SAC,因此可得SA、SB、SC三条侧棱两两互相垂直.最后利用公式求出外接圆的直径,结合球的表面积公式,可得正三棱锥S-ABC的外接球的表面积.
取AC中点,连接BN、SN,∵N为AC中点,SA=SC,∴AC⊥SN,
同理AC⊥BN,∵SN∩BN=N,∴AC⊥平面SBN,
∵SB平面SBN,∴AC⊥SB,∵SB⊥AM且AC∩AM=A,
∴SB⊥平面SACSB⊥SA且SB⊥AC,
∵三棱锥S-ABC是正三棱锥,
∴SA、SB、SC三条侧棱两两互相垂直.
∵底面边长∴侧棱SA=2,
∴正三棱锥S-ABC的外接球的直径为:,
∴正三棱锥S-ABC的外接球的表面积是,故选B.
练习册系列答案
相关题目