题目内容
【题目】某校高二(20)班共50名学生,在期中考试中,每位同学的数学考试分数都在区间内,将该班所有同学的考试分数分为七个组:,,,,,,,绘制出频率分布直方图如图所示.
(1)根据频率分布直方图,估计这次考试学生成绩的中位数和平均数;
(2)已知成绩为104分或105分的同学共有3人,现从成绩在中的同学中任选2人,则至少有1人成绩不低于106分的概率为多少?(每位同学的成绩都为整数)
【答案】(1)中位数为114,平均数为114.32;(2)
【解析】
(Ⅰ)根据中位数的两边概率相等,即可求出中位数;由每组的中间值乘以该组的频率再求和即可求出平均数;
(Ⅱ)先由题意求出成绩在的人数,对成绩为104分或105分的同学和成绩为106分、107分的学生编号,用列举法结合古典概型的概率计算公式即可求出结果.
(Ⅰ)由频率分布直方图,知,所以学生成绩的中位数为.
平均数为 .
(Ⅱ)因为,所以成绩在之间的学生共有6人.
设成绩为104分、105分的学生为,,,成绩为106分、107分的学生为,,.从6人中任选2人,共有,,,,,,,,,,,,,,15种情况,其中恰好2人都不低于106分的有,,共3种情况,其中有1人不低于106分1人低于106分的有,,,,,,,,共9人,所以从成绩在中的同学中任选2人,则至少有1人成绩都不低于106分的概率为.
【题目】为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民粮食生产的积极性,从2004年开始,国家实施了对种粮农民直接补贴.通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额(亿元)与该地区粮食产量(万亿吨)之间存在着线性相关关系.统计数据如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
补贴额亿元 | 9 | 10 | 12 | 11 | 8 |
粮食产量万亿吨 | 23 | 25 | 30 | 26 | 21 |
(1)请根据如表所给的数据,求出关于的线性回归直线方程;
(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴额7亿元,请根据(1)中所得的线性回归直线方程,预测2019年该地区的粮食产量.
(参考公式:,)