题目内容

【题目】函数f(x)=log3(x2+2x﹣8)的定义域为A,函数g(x)=x2+(m+1)x+m.
(1)若m=﹣4时,g(x)≤0的解集为B,求A∩B;
(2)若存在 使得不等式g(x)≤﹣1成立,求实数m的取值范围.

【答案】
(1)解:由x2+2x﹣8>0,解得:x∈(﹣∞,﹣4)∪(2,+∞),

故则函数f(x)=log3(x2+2x﹣8)的定义域A=(﹣∞,﹣4)∪(2,+∞),

若m=﹣4,g(x)=x2﹣3x﹣4,由x2﹣3x﹣4≤0,解得:x∈[﹣1,4],则B=[﹣1,4]

所以A∩B=(2,4]


(2)解:存在 使得不等式x2+(m+1)x+m≤﹣1成立,

即存在 使得不等式﹣m≥ 成立,所以﹣m≥( min

因为 =x+1+ ﹣1≥1,

当且仅当x+1=1,即x=0时取得等号

所以﹣m≥1,

解得:m≤﹣1


【解析】(1)求出集合A,B,由交集运算的定义,可得A∩B;(2)若存在 使得不等式g(x)≤﹣1成立,即存在 使得不等式﹣m≥ 成立,所以﹣m≥( min , 解得实数m的取值范围.
【考点精析】根据题目的已知条件,利用函数的最值及其几何意义的相关知识可以得到问题的答案,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网