题目内容
【题目】已知函数f(x)=ex﹣mx,
(1)求函数f(x)的单调区间.
(2)若函数g(x)=f(x)﹣lnx+x2存在两个零点,求m的取值范围.
【答案】
(1)解:f′(x)=ex﹣m,
若m≤0,则f′(x)>0恒成立,
f(x)在R递增,无递减区间;
m>0时,由f′(x)=0,得:x=lnm,
令f′(x)>0,解得:x>lnm,
令f′(x)<0,解得:x<lnm,
故f(x)在(﹣∞,lnm)递减,在(lnm,+∞)递增
(2)解:由g(x)=f(x)﹣lnx+x2=0,
得m= ,
令h(x)= ,
则h′(x)= ,
观察得x=1时,h′(x)=0.
当x>1时,h′(x)>0,
当0<x<1时,h′(x)<0,
∴h(x)min=h(1)=e+1,
∴函数g(x)=f(x)﹣lnx+x2存在两个零点时,m的取值范围是(e+1,+∞)
【解析】(1)求出函数的导数,通过讨论m的范围,求出函数的单调区间即可;(2)由g(x)=f(x)﹣lnx+x2=0,分离出m,令h(x)= ,由此能求出函数g(x)=f(x)﹣lnx+x2存在两个零点时m的取值范围.
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
【题目】《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:
喜欢《最强大脑》 | 不喜欢《最强大脑》 | 合计 | |
男生 | 15 | ||
女生 | 15 | ||
合计 |
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
( I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
( II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
下面的临界值表仅参考:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2=,其中n=a+b+c+d)