题目内容

中,内角所对边长分别为
(1)求的最大值;  (2)求函数的值域.

(1); (2)

解析试题分析:(1)由数量积的定义,又在中,可得到之间的一个等式,又由已知,可想到运用余弦定理,可找出之间满足的等式关系,最后运用基本不等式,就可求出的最大值; (2)对题中所给函数运用公式 进行化简,可得的形式,结合中所求的最大值,进而求出的范围,最后借助三角函数图象求出函数的最大值和最小值.
试题解析:(1),     2分
  所以 ,即的最大值为   4分
当且仅当时取得最大值          5分
(2)结合(1)得,, 所以  ,
又0< 所以0<             7分
        8分
因0<,所以    9分
  即时,        10分
   即时,        11分
所以,函数的值域为      12分
考点:1.向量的数量积;2.余弦定理;3.三角函数的图象和性质

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网