题目内容
【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):
常喝 | 不常喝 | 合计 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合计 | 30 |
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为 .
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)
【答案】
(1)解:设常喝碳酸饮料肥胖的学生有x人, .
常喝 | 不常喝 | 合计 | |
肥胖 | 6 | 2 | 8 |
不胖 | 4 | 18 | 22 |
合计 | 10 | 20 | 30 |
(2)解:由已知数据可求得:
因此有99.5%的把握认为肥胖与常喝碳酸饮料有关
(3)解:设常喝碳酸饮料的肥胖者男生为A、B、C、D,女生为E、F,则任取两人有 AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种.
其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF.共8种.
故抽出一男一女的概率是
【解析】(1)设常喝碳酸饮料肥胖的学生有x人, .即可将上面的列联表补充完整;(2)根据列联表所给的数据,代入求观测值的公式,把观测值同临界值进行比较,得到有99.5%的把握说看营养说明与性别有关.(3)利用列举法,求出基本事件的个数,即可求出正好抽到一男一女的概率.
【题目】为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.
(1)完成下面列联表,并判断是否有的把握认为“空间想象能力突出”与性别有关;
空间想象能力突出 | 空间想象能力正常 | 合计 | |
男生 | |||
女生 | |||
合计 |
(2)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为,求随机变量的分布列和数学期望.
下面公式及临界值表仅供参考:
0.100 | 0.050 | 0.010 | ||
2.706 | 3.841 | 6.635 |