题目内容
【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
【答案】(I). (II)
【解析】
试题分析:解:(I)从五张卡片中任取两张的所有可能情况有如下10种:
红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,
红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.
其中两张卡片的颜色不同且标号之和小于4的有3种情况,故
所求的概率为.
(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,
多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,
其中颜色不同且标号之和小于4的有8种情况,
所以概率为.
【题目】某家庭记录了未使用节水龙头天的日用水量数据(单位:)和使用了节水龙头天的日用水量数据,得到频数分布表如下:
未使用节水龙头天的日用水量频数分布表
日用水量 | |||||||
频数 |
使用了节水龙头天的日用水量频数分布表
日用水量 | ||||||
频数 |
(Ⅰ)作出使用了节水龙头天的日用水量数据的频率分布直方图;
(Ⅱ)估计该家庭使用节水龙头后,一年能节省多少水?(一年按天计算,同一组中的数据以这组数据所在区间中点的值作代表)
【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式,)