题目内容
【题目】已知两点,,点是圆上任意一点,则的面积最小值是( )
A. B. C. D.
【答案】A
【解析】
试题先由A和B的坐标,确定出直线AB的解析式,再把圆的方程化为标准方程,找出圆心坐标和半径,利用点到直线的距离公式求出圆心到直线AB的距离d,用d-r求出圆上到直线AB距离最小的点到直线AB的距离,即为所求的C点,三角形ABC边AB边上的高即为d-r,故利用两点间的距离公式求出线段AB的长度,利用三角形的面积公式即可求出此时三角形的面积,即为所求面积的最小值.
由于两点,则根据两点的距离公式得到|AB|=,而求解的三角形面积的最小值即为高的最小值,那么圆心(1,0)到直线AB:y-x=2的距离,半径为1,故圆上点到直线AB距离的最小值为d-1,那么利用三角形的面积公式得到为,故答案为
【题目】 某汽车租赁公司为了调查A, B两种车型的出租情况,现随机抽取这两种车型各50辆,分别统计了每辆车在某个星期内的出租天数,统计数据如下表:
A型车
出租天数 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 3 | 30 | 5 | 7 | 5 |
B型车
出租天数 | 3 | 4 | 5 | 6 | 7 |
车辆数 | 10 | 10 | 15 | 10 | 5 |
(1)试根据上面的统计数据,判断这两种车型在本星期内出租天数的方差的大小关系(只需写出结果);
(2)现从出租天数为3天的汽车(仅限A, B两种车型)中随机抽取一辆,试估计这辆汽车是A型车的概率;
(3)如果两种车型每辆车每天出租获得的利润相同,该公司需要购买一辆汽车,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.
【题目】随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调查,并统计得出某款车的使用年限(单位:年)与所支出的总费用(单位:万元)有如下的数据资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
总费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知对呈线性相关关系.
线性回归方程系数公式:,.
(1)试求线性回归方程的回归系数,;
(2)当使用年限为10年时,估计车的使用总费用.