题目内容
【题目】某地拟在一个U形水面PABQ(∠A=∠B=90°)上修一条堤坝(E在AP上,N在BQ上),围出一个封闭区域EABN,用以种植水生植物.为了美观起见,决定从AB上点M处分别向点E,N拉2条分隔线ME,MN,将所围区域分成3个部分(如图),每部分种植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,设所拉分隔线总长度为l.
(1)设∠AME=2θ,求用θ表示的l函数表达式,并写出定义域;
(2)求l的最小值.
【答案】(1)l=,θ∈(0,);(2)lmin=2a.
【解析】
(1)设MN=x,根据AM+BM=a,求出x=,再求得l=,θ∈(0,);(2)令f(θ)=sinθ(1-sinθ),sinθ∈(0,),利用二次函数的图像和性质求l的最小值.
解:(1)∵EM=BM,∠B=∠MEN,
∴△BMN≌△EMN,
∴∠BNM=∠MNE,
∵∠AME=2θ,
∴∠BNM=∠MNE=θ,
设MN=x,
在△BMN中,BM=xsinθ,∴EM=BM=xsinθ,
∴△EAM中,AM=EMcos2θ=xsinθcos2θ,
∵AM+BM=a,
∴xsinθcos2θ+xsinθ=a,
∴x=,
∴l=EM+MN=,θ∈(0,);
(2)令f(θ)=sinθ(1-sinθ),sinθ∈(0,),
∴f(θ)≤,
当且仅当θ=时,取得最大值,此时lmin=2a.
【题目】2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查, 经统计“青少年”与“中老年”的人数之比为9:11
关注 | 不关注 | 合计 | |
青少年 | 15 | ||
中老年 | |||
合计 | 50 | 50 | 100 |
(1)根据已知条件完成上面的列联表,并判断能否有的把握认为关注“一带一路”是否和年龄段有关?
(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.
附:参考公式,其中
临界值表:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |