题目内容
【题目】设是定义在上的奇函数,且,当时,有恒成立,则不等式的解集为
A. B.
C. D.
【答案】D
【解析】
由已知当时,有恒成立,可判断函数 为减函数,由是定义在R上的奇函数,可得g(x)为(-∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,结合g(x)的图象,解不等式即可
设则g(x)的导数为 ∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)<0,∴当x>0时,函数为减函数,又,∴函数g(x)为定义域上的偶函数又∵
∴函数g(x)的图象如图:数形结合可得
∵xf(x)>0且,f(x)=xg(x)(x≠0)
∴x2g(x)>0∴g(x)>0 ∴0<x<1或-1<x<0 故选:D.
练习册系列答案
相关题目
【题目】某地区2007年至2013年农村居民家庭纯收入(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于的线性回归方程;
(2)判断y与之间是正相关还是负相关?
(3)预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,