题目内容

精英家教网如图,已知⊙O的半径为1,点C在直径AB的延长线上,BC=1,点P是半圆上的一个动点,以PC为边作正三角形PCD,且点D与圆心分别在PC两侧.
(1)若∠POB=θ,试将四边形OPDC的面积y表示成θ的函数;
(2)求四边形OPDC面积的最大值?
分析:(1)先利用余弦定理求出PC的值,再将四边形OPDC的面积分解成两个三角形的面积的和,从而得到y关于θ的函数;
(2)由(1)知y=2sin(θ-
π
3
)+
5
3
4
,利用三角函数的值域可求最值.
解答:
解:(1)在△OPC中,由余弦定理得
PC2=OP2+OC2-2OP•OC•cosθ
       =1+4-4cosθ=5-4cosθ.
y=S△OPC+S△PDC
  =
1
2
•OP•OC•sinθ+
3
4
PC2
  =sinθ-
3
cosθ+
5
3
4
(0<θ<π)…7分

(2)y=sinθ-
3
cosθ+
5
3
4
 =2sin(θ-
π
3
)+
5
3
4

当θ=
6
时,y max=2+
5
3
4
点评:本题将三角函数与解三角形结合起来,关键是利用余弦定理求边,再求面积,三角函数求最值应注意角的范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网