题目内容
【题目】已知如图1所示,在边长为12的正方形,中,,且,分别交于点,将该正方形沿,折叠,使得与重合,构成如图2 所示的三棱柱,在该三棱柱底边上有一点,满足; 请在图2 中解决下列问题:
(I)求证:当时,//平面;
(Ⅱ)若直线与平面所成角的正弦值为,求的值.
【答案】(I)见解析;(II)或.
【解析】分析:(I)过作交于,连接,则,推出四边形为平行四边形,则,由此能证明//平面;(Ⅱ)根据及正方形边长为,可推出,从而以为轴,建立空间直角坐标系,设立各点坐标,然后求出平面的法向量,再根据直线与平面所成角的正弦值为,即可求得的值.
详解:(I)解: 过作交于,连接,所以,
∴共面且平面交平面 于,
∵
又 ,
∴四边形为平行四边形,∴,
平面,平面,
∴//平面
(II)解:∵
∴,从而,即.
∴.
分別以为轴,则,.
设平面的法向量为,所以得.
令,则,,所以
由得的坐标为
∵直线与平面所成角的正弦值为,
∴解得或.
练习册系列答案
相关题目
【题目】甲、乙、丙三人去某地务工,其工作受天气影响,雨天不能出工,晴天才能出工.其计酬方式有两种,方式一:雨天没收入,晴天出工每天元;方式而:雨天每天元,晴天出工每天元;三人要选择其中一种计酬方式,并打算在下个月(天)内的晴天都出工,为此三人作了一些调查,甲以去年此月的下雨天数(天)为依据作出选择;乙和丙在分析了当地近年此月的下雨天数()的频数分布表(见下表)后,乙以频率最大的值为依据作出选择,丙以的平均值为依据作出选择.
8 | 9 | 10 | 11 | 12 | 13 | |
频数 | 3 | 1 | 2 | 0 | 2 | 1 |
(Ⅰ)试判断甲、乙、丙选择的计酬方式,并说明理由;
(Ⅱ)根据统计范围的大小,你觉得三人中谁的依据更有指导意义?
(Ⅲ)以频率作为概率,求未来三年中恰有两年,此月下雨不超过天的概率.