题目内容

【题目】在数列{an}中,设ai=2m(i∈N* , 3m﹣2≤i<3m+1,m∈N*),Si=ai+ai+3+ai+6+ai+9+ai+12 , 则满足Si∈[1000,3000]的i的值为

【答案】2
【解析】解:∵3m﹣2≤i<3m+1,
∴3(m+1)﹣2≤i+3<3(m+1)+1,
∴ai+3=2m+1
同理可得:ai+6=2m+2 , ai+9=2m+3 , ai+12=2m+4
∴Si=2m+2m+1+2m+2+2m+3+2m+4=(1+2+4+8+16)2m=312m
∴1000≤312m≤3000.
≤2m
∵m∈N* , ∴2m=64.∴m=6.
∵3×2﹣2≤6<3×2+1,
∴i=2.
所以答案是:2.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网