题目内容
(本小题满分12分)
设
∈R,函数
=
(
),其中e是自然对数的底数.
(1)判断f (x)在R上的单调性;
(2)当– 1 <
< 0时,求f (x)在[1,2]上的最小值.
选做题:请考生从给出的3道题中任选一题做答,并在答题卡上把所选题目的题号用2B铅笔涂黑.注意所做题目的题号必须与所涂的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748277283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748293447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748308446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748324521.png)
(1)判断f (x)在R上的单调性;
(2)当– 1 <
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748277283.png)
选做题:请考生从给出的3道题中任选一题做答,并在答题卡上把所选题目的题号用2B铅笔涂黑.注意所做题目的题号必须与所涂的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.
(1)在区间(
)上, f (x)单调递增;在区间(
,
)上, f (x)单调递减;在区间(
)上, f (x)单调递增.
(2)f (x)在[1,2]上的最小值为f(2) =![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748402583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748340591.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748355456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748371434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748386585.png)
(2)f (x)在[1,2]上的最小值为f(2) =
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748402583.png)
试题分析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027484021210.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748418879.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748433574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748449304.png)
当a = 0时,g (x) =" –1" < 0,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748464549.png)
当a > 0时,g (x) = 0的判别式Δ= 4
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748464323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748464323.png)
所以g(x)<0,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748464549.png)
当a < 0时,g (x) = 0有两个根,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748511459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748355456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748371434.png)
所以,在区间(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748340591.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748558537.png)
在区间(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748355456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748371434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748464549.png)
在区间(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748386585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748558537.png)
综上,当a≥0时,f (x)在R上是减函数;
当a < 0时,f (x)在(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748636590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748355456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748371434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748386585.png)
(2)当 – 1 < a < 0时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748683683.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748698754.png)
所以,在区间[1,2]上,函数f (x)单调递减, ……11分
所以,函数f (x)在区间[1,2]上的最小值为f (2) =
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002748402583.png)
点评:在高考解答题中,经常用到分类讨论思想,分类讨论时要准确确定分类标准,分类标准要不重不漏.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目