题目内容

设P1x1,y1), P1x2,y2),…, Pnxn,yn)(n≥3,n∈N) 是二次曲线C上的点, 且a1=2, a2=2, …, an=2构成了一个公差为d(d≠0) 的等差数列, 其中O是坐标原点. 记Sn=a1+a2+…+an.

(1)若C的方程为-y2=1,n=3. 点P1(3,0) 及S3=162, 求点P3的坐标;(只需写出一个)

(2)若C的方程为y2=2px(p≠0). 点P1(0,0), 对于给定的自然数n, 证明:(x1+p)2, (x2+p)2, …,(xn+p)2成等差数列;

(3)若C的方程为a>b>0). 点P1a,0), 对于给定的自然数n, 当公差d变化时, 求Sn的最小值.

符号意义

本试卷所用符号

等同于《实验教材》符号

向量坐标

={x,y}

=(x,y)

正切

tg

tan

解:(1) a1=2=9,由S3=a1+a3)=162,得a3=3=99.

-y2=1

,得

x=90

x+y=99

y=9


     ∴点P3的坐标可以为(3,3).

(2)对每个自然数k,1≤k≤n,由题意2=(k-1)d,及

y=2pxk

,得x+2pxk=(k-1)d

x+y=(k-1)d

即(xk+p)2=p2+(k-1)d,

   ∴(x1+p)2, (x2+p)2, …,(xn+p)2是首项为p2,公差为d的等差数列.

 (3) 解法一:原点O到二次曲线C:a>b>0)上各点的最小距离为b,最大距离为a.

    ∵a1=2=a2, ∴d<0,且an=2=a2+(n-1)d≥b2,

    ∴≤d<0. ∵n≥3,>0

    ∴Sn=na2+d在[,0)上递增,

  故Sn的最小值为na2+?=.

  解法二:对每个自然数k(2≤k≤n),

        

x+y=a2+(k-1)d

,解得y=

+=1

∵0< y≤b2,得≤d<0     ∴≤d<0    以下与解法一相同.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网