题目内容
已知函数f(x)=
的图象过点(0,
-1).
(1)求f(x)的解析式;
(2)设P1(x1,y1),P2(x2,y2)为y=f(x)的图象上两个不同点,又点P(xP,yP)满足:
=
(
+
),其中O为坐标原点.试问:当xP=
时,yP是否为定值?若是,求出yP的值,若不是,请说明理由.
a•2x | ||
2x+
|
2 |
(1)求f(x)的解析式;
(2)设P1(x1,y1),P2(x2,y2)为y=f(x)的图象上两个不同点,又点P(xP,yP)满足:
OP |
1 |
2 |
OP1 |
OP2 |
1 |
2 |
分析:(1)由题意知
=
-1,解得a=1,由此能求出f(x)的解析式.
(2)
=xP=
(x1+x2)⇒x1+x2=1⇒x2=1-x1,由此能够推导出yp为定值
.
a | ||
1+
|
2 |
(2)
1 |
2 |
1 |
2 |
1 |
2 |
解答:解:(1)由题意知
=
-1,
解得a=1,
∴f(x)=
;
(2)
=xP=
(x1+x2)⇒x1+x2=1⇒x2=1-x1yP=
(y1+y2)=
(
+
)=
(
+
)
=
(
+
)=
(
+
)
=
•1=
,
∴yp为定值
.
a | ||
1+
|
2 |
解得a=1,
∴f(x)=
2x | ||
2x+
|
(2)
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
2x1 | ||
2x1+
|
2x2 | ||
2x2+
|
1 |
2 |
2x1 | ||
2x1+
|
21-x1 | ||
21-x1+
|
=
1 |
2 |
2x1 | ||
2x1+
|
2 | ||
2+
|
1 |
2 |
2x1 | ||
2x1+
|
| ||
|
=
1 |
2 |
1 |
2 |
∴yp为定值
1 |
2 |
点评:本题考查函数解析式的常用解法,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目
已知函数f(x)=a-
,若f(x)为奇函数,则a=( )
1 |
2x+1 |
A、
| ||
B、2 | ||
C、
| ||
D、3 |