ÌâÄ¿ÄÚÈÝ
ÒÑÖªfÊÇÖ±½Ç×ø±êƽÃæxOyµ½×ÔÉíµÄÒ»¸öÓ³É䣬µãPÔÚÓ³ÉäfϵÄÏóΪµãQ£¬¼Ç×÷Q=f£¨P£©£®ÉèP1£¨x1£¬y1£©£¬P2=f£¨P1£©£¬P3=f£¨P2£©£¬¡£¬Pn=f£¨Pn-1£©£¬¡£®Èç¹û´æÔÚÒ»¸öÔ²£¬Ê¹ËùÓеĵãPn£¨xn£¬yn£©£¨n¡ÊN*£©¶¼ÔÚÕâ¸öÔ²ÄÚ»òÔ²ÉÏ£¬ÄÇô³ÆÕâ¸öԲΪµãPn£¨xn£¬yn£©µÄÒ»¸öÊÕÁ²Ô²£®ÌرðµØ£¬µ±P1=f£¨P1£©Ê±£¬Ôò³ÆµãP1ΪӳÉäfϵIJ»¶¯µã£®
£¨¢ñ£© ÈôµãP£¨x£¬y£©ÔÚÓ³ÉäfϵÄÏóΪµãQ£¨2x£¬1-y£©£®
¢ÙÇóÓ³Éäfϲ»¶¯µãµÄ×ø±ê£»
¢ÚÈôP1µÄ×ø±êΪ£¨1£¬2£©£¬ÅжϵãPn£¨xn£¬yn£©£¨n¡ÊN*£©ÊÇ·ñ´æÔÚÒ»¸ö°ë¾¶Îª3µÄÊÕÁ²Ô²£¬²¢ËµÃ÷ÀíÓÉ£®
£¨¢ò£© ÈôµãP£¨x£¬y£©ÔÚÓ³ÉäfϵÄÏóΪµãQ(
x+y |
2 |
x-y |
2 |
5 |
·ÖÎö£º£¨¢ñ£©¢ÙÉè²»¶¯µãµÄ×ø±êΪP0£¨x0£¬y0£©£¬ÒÀ¾Ý¶ÔÓ¦¹Øϵ¼°²»¶¯µãµÄ¶¨Ò壬Áнⷽ³Ì×é
£¬²¢½â¼´¿É£®
¢ÚÓÉP1£¨1£¬2£©£¬µÃP2£¨2£¬-1£©£¬P3£¨4£¬2£©£¬P4£¨8£¬-1£©ËùÒÔ|P1P4|=
£¾6£¬ÔòµãP1£¬P4²»¿ÉÄÜÔÚͬ Ò»¸ö°ë¾¶Îª3µÄÔ²ÄÚ
£¨¢ò£© ÓÉPn+1=f£¨Pn£©£¬µÃ£¬
¹¹ÔìÁ½¸öµÈ±ÈÊýÁРд³öËüÃǵÄͨÏʽ£¬ÉèA£¨3£¬1£©£¬£¬¼ÆËãPnµ½AµÄ¾àÀ룬¿ÉµÃ´Ë¾àÀëСÓÚ
£¬¹ÊËùÓеĵãPn£¨n¡ÊN*£©¶¼ÔÚÒÔ PΪԲÐÄ£¬
Ϊ°ë¾¶µÄÔ²ÄÚ£®
|
¢ÚÓÉP1£¨1£¬2£©£¬µÃP2£¨2£¬-1£©£¬P3£¨4£¬2£©£¬P4£¨8£¬-1£©ËùÒÔ|P1P4|=
58 |
£¨¢ò£© ÓÉPn+1=f£¨Pn£©£¬µÃ£¬
|
5 |
5 |
½â´ð£º½â£º£¨¢ñ£©¢Ù½â£ºÉè²»¶¯µãµÄ×ø±êΪP0£¨x0£¬y0£©£¬
ÓÉÌâÒ⣬µÃ
£¬½âµÃx0=0£¬ y0=
£¬
ËùÒÔÓ³Éäfϲ»¶¯µãΪP0(0£¬
)
¢Ú½áÂÛ£ºµãPn£¨xn£¬yn£©²»´æÔÚÒ»¸ö°ë¾¶Îª3µÄÊÕÁ²Ô²£®
Ö¤Ã÷£ºÓÉP1£¨1£¬2£©£¬µÃP2£¨2£¬-1£©£¬P3£¨4£¬2£©£¬P4£¨8£¬-1£©£¬
ËùÒÔ|P1P4|=
£¾6£¬
ÔòµãP1£¬P4²»¿ÉÄÜÔÚͬ Ò»¸ö°ë¾¶Îª3µÄÔ²ÄÚ£¬
ËùÒÔµãPn£¨xn£¬yn£©£¨n¡ÊN*£© ²»´æÔÚÒ»¸ö°ë¾¶Îª3µÄÊÕÁ²Ô²
£¨¢ò£©Ö¤Ã÷£ºÓÉP1£¨2£¬3£©£¬µÃP2(
£¬-
)£®
ÓÉPn+1=f£¨Pn£©£¬µÃ
ËùÒÔxn+1+yn+1=xn+1£¬xn+1-yn+1=yn+1£¬
ÓÉPn+2=f£¨Pn+1£©£¬µÃ
£¬
ËùÒÔxn+2=
xn+
£¬ yn+2=
yn+
¼´xn+2-3=
(xn-3)£¬ yn+2-1=
(yn-1)£¬
ÓÉx1-3¡Ù0£¬x2-3¡Ù0£¬µÃxn-3¡Ù0£¬
ͬÀíyn-1¡Ù0£¬
ËùÒÔ
=
£¬
=
£¬
ËùÒÔÊýÁÐ{x2n-1-3}£¬{x2n-3}£¨n¡ÊN*£©¶¼Êǹ«±ÈΪ
µÄµÈ±ÈÊýÁУ¬Ê×Ïî·Ö±ðΪ x1-3=-1£¬ x2-3=
£¬
ËùÒÔx2n-1-3=-(
)n-1£¬ x2n-3=
¡Á(
)n-1£¬
ͬÀí¿ÉµÃy2n-1-1=2¡Á(
)n-1£¬ y2n-1=-
¡Á(
)n-1
ËùÒÔ¶ÔÈÎÒân¡ÊN*£¬|xn-3|¡Ü1£¬|yn-1|¡Ü2£¬
ÉèA£¨3£¬1£©£¬Ôò|APn|=
¡Ü
£¬
ËùÒÔ|APn|¡Ü
£¬
¹ÊËùÓеĵãPn£¨n¡ÊN*£©¶¼ÔÚÒÔA£¨3£¬1£©ÎªÔ²ÐÄ£¬
Ϊ°ë¾¶µÄÔ²ÄÚ»òÔ²ÉÏ£¬
¼´µãPn£¨xn£¬yn£©´æÔÚÒ»¸ö°ë¾¶Îª
µÄÊÕÁ²Ô²
ÓÉÌâÒ⣬µÃ
|
1 |
2 |
ËùÒÔÓ³Éäfϲ»¶¯µãΪP0(0£¬
1 |
2 |
¢Ú½áÂÛ£ºµãPn£¨xn£¬yn£©²»´æÔÚÒ»¸ö°ë¾¶Îª3µÄÊÕÁ²Ô²£®
Ö¤Ã÷£ºÓÉP1£¨1£¬2£©£¬µÃP2£¨2£¬-1£©£¬P3£¨4£¬2£©£¬P4£¨8£¬-1£©£¬
ËùÒÔ|P1P4|=
58 |
ÔòµãP1£¬P4²»¿ÉÄÜÔÚͬ Ò»¸ö°ë¾¶Îª3µÄÔ²ÄÚ£¬
ËùÒÔµãPn£¨xn£¬yn£©£¨n¡ÊN*£© ²»´æÔÚÒ»¸ö°ë¾¶Îª3µÄÊÕÁ²Ô²
£¨¢ò£©Ö¤Ã÷£ºÓÉP1£¨2£¬3£©£¬µÃP2(
7 |
2 |
1 |
2 |
ÓÉPn+1=f£¨Pn£©£¬µÃ
|
ËùÒÔxn+1+yn+1=xn+1£¬xn+1-yn+1=yn+1£¬
ÓÉPn+2=f£¨Pn+1£©£¬µÃ
|
ËùÒÔxn+2=
1 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
¼´xn+2-3=
1 |
2 |
1 |
2 |
ÓÉx1-3¡Ù0£¬x2-3¡Ù0£¬µÃxn-3¡Ù0£¬
ͬÀíyn-1¡Ù0£¬
ËùÒÔ
xn+2-3 |
xn-3 |
1 |
2 |
yn+2-1 |
yn-1 |
1 |
2 |
ËùÒÔÊýÁÐ{x2n-1-3}£¬{x2n-3}£¨n¡ÊN*£©¶¼Êǹ«±ÈΪ
1 |
2 |
1 |
2 |
ËùÒÔx2n-1-3=-(
1 |
2 |
1 |
2 |
1 |
2 |
ͬÀí¿ÉµÃy2n-1-1=2¡Á(
1 |
2 |
3 |
2 |
1 |
2 |
ËùÒÔ¶ÔÈÎÒân¡ÊN*£¬|xn-3|¡Ü1£¬|yn-1|¡Ü2£¬
ÉèA£¨3£¬1£©£¬Ôò|APn|=
(xn-3)2+(yn-1)2 |
1+4 |
ËùÒÔ|APn|¡Ü
5 |
¹ÊËùÓеĵãPn£¨n¡ÊN*£©¶¼ÔÚÒÔA£¨3£¬1£©ÎªÔ²ÐÄ£¬
5 |
¼´µãPn£¨xn£¬yn£©´æÔÚÒ»¸ö°ë¾¶Îª
5 |
µãÆÀ£º±¾Ì⿼²éÓ³ÉäµÄ¶¨Ò壬¹¹ÔìµÈ±ÈÊýÁв¢ÇóͨÏʽ£¬Á½µã¼äµÄ¾àÀ빫ʽµÄÓ¦Ó㮿¼²é·ÖÎö½â¾öÎÊÌ⣬ÔĶÁ´¦ÀíÐÅÏ¢µÈÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿