题目内容
已知数列的前项和为,数列满足:。
(1)求数列的通项公式;
(2)求数列的通项公式;
(3)若,求数列的前项和.
(1);(2) ;(3) .
解析试题分析:(1)已知前项和公式求,则.用此公式即可得通项公式;
(2)根据递推公式的特征,可用叠加法求;(3)由(1)(2)及题意得,
由等差数列与等比数列的积或商构成的新数列,求和时用错位相消法.本题中要注意,首项要单独考虑.
试题解析:(1),, 2分
当时,
4分
(2)
以上各式相加得,
又故 8分
(3)由题意得,
当时,
两式相减得,
又,符合上式, 12分
考点:等差数列与等比数列.
练习册系列答案
相关题目