题目内容
16.若AB是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>c)垂直于x轴的动弦,F为焦点,当AB经过焦点F时|AB|=3,当AB最长时,∠AFB=120°.(Ⅰ)求椭圆C的方程;
(Ⅱ)已知N(4,0),连接AN与椭圆相交于点M,证明直线BM恒过x轴定点.
分析 (Ⅰ)通过$\left\{\begin{array}{l}{\frac{2{b}^{2}}{a}=3}\\{\frac{b}{a}=sin60°}\end{array}\right.$计算即得结论;
(Ⅱ)通过设BM直线方程并与椭圆方程联立,利用A、N、M三点共线,通过韦达定理代入计算、整理即得结论.
解答 (Ⅰ)解:由题可知$\left\{\begin{array}{l}{\frac{2{b}^{2}}{a}=3}\\{\frac{b}{a}=sin60°}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=2}\\{b=\sqrt{3}}\end{array}\right.$,
∴椭圆C的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)证明:设B(x1,y1),M(x2,y2),定点(x0,0),
则A(x1,-y1),BM直线方程为:y=k(x-x0),
联立BM与椭圆C的方程,消去y得:
(3+4k2)2x2-8k2x0x+4k2${{x}_{0}}^{2}$-12=0,
∴x1+x2=$\frac{8{k}^{2}{x}_{0}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}{{x}_{0}}^{2}-12}{3+4{k}^{2}}$,
∴$\overrightarrow{AN}$=(4-x1,y1),$\overrightarrow{MN}$=(4-x2,-y2),
∵A、N、M三点共线,
∴y2(4-x1)+y1(4-x2)=0,
∴4(y1+y2)-x1y2-x2y1=0,
∴4k(x1+x2-2x0)-2kx1x2+kx0(x1+x2)=0,
∴4($\frac{8{k}^{2}{x}_{0}}{3+4{k}^{2}}$-2x0)-2$\frac{4{k}^{2}{{x}_{0}}^{2}-12}{3+4{k}^{2}}$+x0$\frac{8{k}^{2}{x}_{0}}{3+4{k}^{2}}$=0,
整理得:32k2-32k2x0-8k2${{x}_{0}}^{2}$+8k2x0=0,
即(1-x0)(x0+4)=0,
解得:x0=1或x0=-4(舍),
∴直线BM恒过x轴定点(1,0).
点评 本题是一道直线与圆锥曲线的综合题,考查椭圆方程,考查直线过定点问题,注意解题方法的积累,属于中档题.
A. | (42,56) | B. | (42,56] | C. | (56,72] | D. | (56,72) |
A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 2 |